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Introduction 

As part of a wider effort to improve the overall performance of the AequilibraE transport 
modelling package, we have recently1 identified that the current performance of the traffic 
assignment module lags behind other general purpose path finding libraries.  

In this paper we will discuss why the choice of heap structure was the primary reason for the 
performance gap, how we identified this and consequently selected an alternative that is better 
suited to the types of networks commonly found in transport models. 

 

Profiling  

Any runtime optimisation exercise that aims for success starts by empirically evaluating the 
existing performance bottlenecks that need to be relieved. For our initial profiling runs we used 
utilised yappi (Yet Another Python Profiler) and snakeviz to profile a typical networking skimming 
use case. 

Network skimming involves finding the shortest path for every origin of interest to every 
destination, referred to as all-to-all pathfinding. Skimming then walks these paths to determine 
the cost of taking the given path. This is achieved through Dijkstra’s algorithm, which computes 
the minimum spanning tree – the set of shortest paths from an origin to all destination. We 
profiled the entire runtime of AequilibraE’s skimming functionality, which included our 
implementation of Dijkstra’s algorithm and cascade skimming. 

From this initial profiling it became apparent that, as expected from the literature and as 
theorised in our previous work, AequilibraE’s path building is bottlenecked on the heap method 
remove_min which was responsible for 87% of the total runtime. It was definitive that this was 
where our optimisations efforts should be focused. 

Data structures and why it they matter 

The process of traffic modelling requires repeated computation of the shortest path to get from 
an origin to a destination to assign traffic in the first case. This is normally achieved by using 
Dijkstra’s algorithm to build paths for every origin to every destination each iteration of traffic 
assignment.  

To implement Dijkstra efficiently we need a fast way to store the cost to reach each node and 
quickly retrieve the smallest one. This use case is well served by the abstract data structure class 
of priority queues. Naïve implementations of priority queues as arrays have linear time 
complexities for insertion and removal depending on whether it is sorted or not, whereas heap-
based implementations are able to execute both operations in logarithmic time. There are other 
specialised implementations such as a bucket queue, which operate on integer keys. We decided 
to examine the heap implementations due to their superior time complexities and flexibility 
given the weights on traffic networks tend to be floating points.  

 
1 https://www.linkedin.com/pulse/faster-path-building-transport-networks-outer-loop-consulting 



 

What is a heap? 

A heap is an implementation of a priority queue which makes use of a tree structure with two 
rules to order nodes in a given priority order. A node stores references to its parent, children, 
and a value representing its priority. A heap which contains the largest value at the root is called 
a maximum heap, whereas a minimum element corresponds to a minimum heap. We will refer 
to minimum heaps for the remainder of the post since that is the form most useful in Dijkstra’s 
algorithm.  

Each node maintains a reference to its children and to its parent. The two rules of a basic heap 
implementation are that its order cannot be violated – a child to a node must always be greater 
than or equal to its parent, and the heap satisfies complete and proper tree properties. A 
complete tree means each layer is filled before moving to the next level, and a proper tree 
means the nodes on the bottom level are filled from the left to right. Each time a node is 
removed from the heap, the heap corrects its order to maintain these rules, thereby 
guaranteeing the next smallest element becomes the new root. For those who are interested, 
this is a good website to visualise the actions of different heaps 
(https://www.cs.usfca.edu/~galles/visualization/Heap.html) 

How are they implemented 

There are two implementations of heaps which work well for different problems: tree-based and 
array-based implementations. Tree-based heaps use pointers to store the connections between 
each node, whereas an array-based heap maintains the structure through an ordered array. 

Tree-based heaps 

Tree-based heaps maintain the tree structure through pointers to a node’s parent and children 
alongside the data of the node. These heaps are simpler to implement and work well for more 
complicated heap structures with abstracted logic. Tree-based heaps don’t require contiguous 
chunks of memory to store its structure. 

Array-based heaps 

Array-based heaps make use of the heap rules to store the tree in an in-order ordered2 array. 
The requirement that the heap is complete and proper guarantees that there are no null entries 
before the last element. Consequently, the heap inherits the cache locality advantages of a 
contiguous array and removes the need for storing pointers in the node, as an arithmetic 
relationship between node parents can be derived from the index. For example, a node at array 
index i in a binary heap can access its children by accessing the 2i+1, 2i+2’th index in the 
array, or its parent by accessing the index at the floor of i-1/2. 

 
2 https://en.wikipedia.org/wiki/Tree_traversal#Inorder_traversal 



 

 
Figure 1: An example of the same binary heap in equivalent tree and array forms. Credit: https://medium.com/techie-

delight/heap-practice-problems-and-interview-questions-b678ff3b694c  

Variety of Implementations 

Within the two implementation families identified in the previous section, there are also many 
more subtle implementation variations.  

AequilibraE currently uses a Fibonacci heap, which is a variation on binomial trees introduced in 
1984. The heap is comprised of a forest of heap ordered tree, typically a double linked list. The 
heap was created around optimising the amortized performance by using lazy heap operations. 
The techniques used to make these operations work is complex – for those who are interested 
this video3 covers it in detail. 

To best evaluate alternate implementations, appropriate for path building on transport 
networks, we implemented several variations from the family of heaps known as k-ary heaps 
(also referred to as d-ary heaps). Each member of the k-ary heap is an implementation where 
each node has up to k children. Its simplest is the well-known binary heap (k=2) which we 
illustrated above.  

The k-ary family was chosen because of its simplicity and its consistent high performance in 
other path building research. In our testing, we implemented the heap for 2, 3, 4 children. Our 
testing showed that performance degraded above 4 children. These were implemented in 
Cython and compiled to C++.  

In a twist of fate, it turns out our sometimes collaborator Francois Pacull was simultaneously 
engaged in publishing a similar investigation4 into the efficacy of different heaps within Dijkstra’s 
also implemented in Cython. Upon discovering this, we added in two of the heap 

 
3 https://www.youtube.com/watch?v=6JxvKfSV9Ns&t=1s&ab_channel=SithDev 
4 https://aetperf.github.io/2022/12/21/Dijkstra-s-algorithm-in-Cython-part-1-3.html 



 

implementations that Francois had independently written giving us six data structures to test – 
the original Fibonacci heap, 3-ary heap, and two implementations each of the binary and 4-ary 
heap (in the following testing Francois’s implementation are referred to with the pq_ prefix).  

Theorised Performance 

The following table shows the amortised complexity compared to the existing Fibonacci 
implementation.  

 Remove Min Increase Key Insert 

k-ary heap O(log(n)) O(log(n)) O(log(n)) 

Fibonacci Heap O(log(n)) O(1) O(1) 

Despite the excellent “theoretical performance” in comparison to the k-ary heaps, maintaining 
the Fibonacci heap requires a large amount of overhead which is amortised in the asymptotic 
analysis. Previous studies5 of different heap implementations have shown this overhead 
significantly impacts performance for practical purposes. In addition, its structural complexity 
precludes it from using an array-based approach, which negatively impacts the cache efficiency 
of the data structure since pointer arrays don’t tend to high spatial locality.  

CPU Cache 

CPU memory caching is a key principle to consider when writing high performance programs. 
The CPU cache is a small and incredibly fast piece of SRAM that sits in front of main memory to 
speed up memory access to frequent, previously accessed, or predicted memory addresses. It is 
typically broken down into 3 levels: L1, L2, and L3. Each level increases in size but is also slower 
to access.  

“Of all the fancy data structures in the world that you can come up with. The 
one the hardware likes best is an array.”6 - Scott Meyers  

The approximate size and speed of the different caches for an i7-9xx CPU has been included 
below for reference. 

  

 
5 https://epubs.siam.org/doi/epdf/10.1137/1.9781611973198.7 
6 Scott Meyers, https://youtu.be/WDIkqP4JbkE?t=1542 



 

 

Memory Type Size (i7-9xx 
CPU) 

Number of 
cycles to 
access 

Cores 
per 

cache 

L1 Cache 32kb 4 1 

L2 Cache 256kb 11 2 

L3 Cache 8mb 39 All 

Main memory - 107 All 

  

CPU caches are further broken down into data and instruction caches. 

When a memory address is accessed, not just that address is accessed. Memory is segmented 
into cache lines (not to be confused with pages), which are 64-byte portions of memory aligned 
to a boundary. When you read or write to a single byte, the CPU acts on the relevant cache line.  

When the cache line is fetched, it is pulled through the various CPU caches. This can prevent 
having to go back to main memory for a subsequent call since if you are accessing one portion of 
memory, there’s a high probability you will access something close by next. When the cache is 
full a particular cache line is evicted from that cache level7.   

Knowledge of CPU cache effects can explain some otherwise counter-intuitive performance 
results where simple data structures and algorithms outperform complicated ones. Fibonacci 
heaps nodes are often scattered or unsorted in memory and use pointers to store the children, 
meaning they are unable to take full advantage of cache lines. 

Benchmark Methodology 

In order to examine the impact of varying heap implementations on skimming performance, we 
used four models of increasing sizes, and executed the full skimming routine and measured the 
time taken. The model sizes ranged across typical sizes of real-world AequilibraE’s projects. We 
introduced Australia as the largest model that would conceivably be used regularly to determine 
whether the Fibonacci heap’s theoretical performance would show in the scope of practical use. 
The Chicago sketch model was provided by the TransportationNetworks8 repository, which 
provides a set of example transportation networks. 

  

 
7 Cache lines are evicted through complicated cache replacement policies not just first in last out. 

8 https://github.com/bstabler/TransportationNetworks 

 



 

 

  # links # nodes 

Arkansas statewide  273,964 88,446 

Chicago sketch  38,733 12,694 

Long An  139,966 59,329 

Australia 3,074,376 1,236,497 

  

To test the performance of the heaps, we generated a single class distance skim matrix. Skim 
generation requires that paths are built from all origins to all destinations without consideration 
of actual demand between the ODs. Thus, it serves as a good benchmarking tool for evaluating 
the path building performance across the entire network.  

Results 

Performance across project size 

The first benchmark we executed confirmed our suspicions – anything is better than a Fibonacci 
heap. In the below plot of the minimum runtime for our benchmark (normalised to time per 
1000 origins), we see that all trialled data structures have a mostly linear relationship with the 
network size, however the Fibonacci heap is significantly less performant than all others.  

Additionally, the 3,4-ary heaps performed consistently better than the implementations of the 
binary heap. The 4-ary heap implemented by Francois came out on top overall as the fastest 
data structure consistently.  

 
Figure 2: Minimum single threaded runtime normalised to 1000 origins 



 

The k-heap family outperformed the Fibonacci heap by a significant margin across projects of all 
sizes. This corroborates with the literature, which has previously recorded the binary and 4-ary 
heap as the most effective heaps in practice.  

The Fibonacci heap’s performance has been theorised to scale better for larger network sizes, 
however we were not able to observe this in the scale of networks we were trialling, despite the 
inclusion of one of the largest traffic networks we have seen in usage anywhere. An explanation 
for this is that the size of the heap does not grow significantly as the size of the project does. To 
corroborate this, the maximum size the heap reached in each project was recorded: 

 

Project Max heap size 
(open nodes) 

Chicago 312 
LongAn 490 

Arkansas 555 
Australia 1283 

This represents the “cloud” of reachable nodes currently being considered within the Dijkstra 
algorithm. This leads to the following key observation: 

Due to the relative sparsity of transport network graphs, the set of open nodes 
does not grow fast enough for the asymptotic behaviour of the Fibonacci heap 

to become significant.  

A common theme we saw in studies where Fibonacci heaps performed well was densely 
connected graphs, such as social networks, where there were often 10s or 100s of connections 
per node. Road networks, however, generally have two to four connections per node and do not 
seem to generate enough complexity for the Fibonacci’s theoretical benefits to overcome its lack 
of cache friendliness.  

Further Analysis 

At this point, we have identified a clearly superior implementation which has dramatically 
reduced AequilibraE’s runtime for common modelling operations while requiring essentially zero 
trade-offs to be made. This is a slam dunk by any measure, and we could quite easily finish our 
analysis here. However, to gain deeper insight into exactly why the k-ary heaps outperform the 
Fibonacci, two further analyses were undertaken.  

• The Cachegrind tool (from the Valgrind suite) was used to empirically measure the 
number of instructions executed and gain insight into the cache behaviour. 

• The two parallelly implemented versions of the best performing 4-ary heap were 
compared against each other in a head-to-head fashion.   



 

Cachegrind results 

To gain some further insight into the improved performance of the 4-ary heap we used 
Cachegrind, a tool for simulating how a program interacts with a machines cache hierarchy. It 
gathers information on the number of cache reads and writes and whether the actions used the 
instruction and data cache or main memory. To make a fair comparison and reduce noise within 
the results, a simple dummy script was used which performed minimal setup. Valgrind was also 
invoked directly on the virtual environment’s python binary to bypass any unnecessary 
forks/noise. 

Cachegrind simulates two levels of cache, I1 D1, and LL (last-level). While most modern systems 
use 3 levels of cache the first two are the most impactful for performance.   

Term Meaning 

Instruction Cache (I) Cache for instruction and routines to be executed 

Data cache (D) Cache for previously fetched or predicted data 

Reference (ref) Number of times data or instructions were executed 

Cache miss (miss) A “miss” is where a requested memory address was 
not present within the desired cache, and it had to 
be fetched from a lower cache or main memory. 

One performance improvement we implemented earlier was to transpose the output matrices 
during the worker thread setup stage such that the program operates on row slices instead of 
columns. This meant that each operation had a contiguous slice of memory and resulted in a 
reduction in D1 miss rate from 3.6% to 2.8% and halved the number of LLd misses. This 
translated to an approximate 10-15% performance improvement in multithreaded use cases. 
This provided no single thread performance improvement as a matrix with dimension of size 1 is 
already stored contiguously in memory. 
Fibonacci heap, without transpose, quad core 
I   refs:      36,498,705,383 
I1  misses:        91,039,337 
LLi misses:         1,862,276 
I1  miss rate:           0.25% 
LLi miss rate:           0.01% 
  
D   refs:      15,857,605,173  (8,769,487,809 rd   + 7,088,117,364 wr) 
D1  misses:       564,765,898  (  350,933,238 rd   +   213,832,660 wr) 
LLd misses:        19,470,537  (   10,731,489 rd   +     8,739,048 wr) 
D1  miss rate:            3.6% (          4.0%     +           3.0%  ) 
LLd miss rate:            0.1% (          0.1%     +           0.1%  ) 
  
LL refs:          655,805,235  (  441,972,575 rd   +   213,832,660 wr) 
LL misses:         21,332,813  (   12,593,765 rd   +     8,739,048 wr) 
LL miss rate:             0.0% (          0.0%     +           0.1%  ) 

  

Fibonacci heap, with transpose, quad core 
I   refs:      36,503,276,701 



 

I1  misses:        91,055,672 
LLi misses:         1,328,315 
I1  miss rate:           0.25% 
LLi miss rate:           0.00% 
  
D   refs:      15,860,038,031  (8,770,987,860 rd   + 7,089,050,171 wr) 
D1  misses:       449,789,389  (  295,717,083 rd   +   154,072,306 wr) 
LLd misses:        10,706,658  (    7,062,628 rd   +     3,644,030 wr) 
D1  miss rate:            2.8% (          3.4%     +           2.2%  ) 
LLd miss rate:            0.1% (          0.1%     +           0.1%  ) 
  
LL refs:          540,845,061  (  386,772,755 rd   +   154,072,306 wr) 
LL misses:         12,034,973  (    8,390,943 rd   +     3,644,030 wr) 
LL miss rate:             0.0% (          0.0%     +           0.1%  ) 

 The swap to a 4-ary heap resulted in reducing the instruction references by approximately 17 
million (1.8x), this can be roughly considered as doing half the work and achieving the same 
result. In addition, the 4-ary heap uses half the data references and has 1.17x less D1 misses. 
Altogether, we believe the new heap is performing less work and making more efficient use of 
the data once it is within the cache. We believe the lack of change in the LLd misses is due to the 
load of data that has never been referenced before. 

Fibonacci heap, single core 
I   refs:      36,508,418,516 
I1  misses:        90,781,033 
LLi misses:           976,889 
I1  miss rate:           0.25% 
LLi miss rate:           0.00% 
  
D   refs:      15,861,252,234  (8,773,204,189 rd   + 7,088,048,045 wr) 
D1  misses:       443,906,263  (  292,277,189 rd   +   151,629,074 wr) 
LLd misses:        10,421,097  (    6,850,826 rd   +     3,570,271 wr) 
D1  miss rate:            2.8% (          3.3%     +           2.1%  ) 
LLd miss rate:            0.1% (          0.1%     +           0.1%  ) 
  
LL refs:          534,687,296  (  383,058,222 rd   +   151,629,074 wr) 
LL misses:         11,397,986  (    7,827,715 rd   +     3,570,271 wr) 
LL miss rate:             0.0% (          0.0%     +           0.1%  ) 

  

4-ary heap, single core 
I   refs:      19,635,847,213 
I1  misses:        89,308,275 
LLi misses:           582,302 
I1  miss rate:           0.45% 
LLi miss rate:           0.00% 
  
D   refs:       7,911,674,825  (5,176,013,613 rd   + 2,735,661,212 wr) 
D1  misses:       379,788,125  (  260,426,398 rd   +   119,361,727 wr) 
LLd misses:        10,478,536  (    6,715,570 rd   +     3,762,966 wr) 
D1  miss rate:            4.8% (          5.0%     +           4.4%  ) 
LLd miss rate:            0.1% (          0.1%     +           0.1%  ) 
  
LL refs:          469,096,400  (  349,734,673 rd   +   119,361,727 wr) 
LL misses:         11,060,838  (    7,297,872 rd   +     3,762,966 wr) 
LL miss rate:             0.0% (          0.0%     +           0.1%  ) 

 



 

A summary table is shown below of the combined transpose and heap changes. 

  
Instruction 

refs 
Data ref I1 misses LLi misses D1 misses 

LLd 
misses 

Fibonacci 
heap, without 
transpose, 
quad core  

3,649,870,538 1,585,760,517 91,039,337 1,862,276 56,4765,898 19,470,537 

4-ary heap, 
single core  

1,963,584,721 7,911,674,825 89,308,275 582,302 379,788,125 10,478,536 

Ratio 
(before/after) 

1.86 2.00 1.02 3.20 1.49 1.86 

  

Overall, our changes have made a significant impact in reducing the number of instruction and 
data misses, reducing the amount of work being done and making the work being done more 
efficient through better use of data caches. 

Differences in k-heap implementations 

The runtime between the 4-ary heap implemented by Francois and those we implemented 
varied significantly, which spurred us to examine the key differences in implementation and its 
subsequent impact on performance. 

The greatest difference was the way in which the heap was stored, where Francois implemented 
two parallel arrays – one which stored the elements of the heap while the other maintained the 
tree structure through indices which accessed the element array. Our implementation used an 
array of pointers to the nodes of the tree, where the structure was maintained in the order of 
pointers.  

In addition, the logic used to maintain heap structure differed in implementation, where Francois 
used while loops instead of tail recursion to restore heap order. The logic used to find the 
minimum of a given node’s child also varied, where our implementation looped to find the 
number of children and iterated through them to find the smallest element. This was done for 
the brevity and scalability of the code and to allow for the implementation of any arbitrary k-ary 
heaps by specifying the number of children. Francois’ implementation effectively unrolled this 
loop to make it as efficient as possible. 

The pseudocode related to the logic and heap structure has been included below. 

 
 

  



 

 

 Heap Structure 
class Heap: 
    structure: array(Node*) 
    size: int 
 
class Node:     
    key: float 
    array_index: int # index in the  
                     # structure array 
    state: char # is this node in the heap 
    index: int  # index in the node array 

 

class Heap: 
    structure: array(int) 
    nodes: array(Node) 
    size: int 
 
class Node: 
    key: float 
    index: int  # index in the structure array 
    state: char # is this node in the heap 

 Smallest Child Logic 
 

num_children = min(q.size - 4 * a, 4) 
for i in range(1, num_children + 1): 
  if min_child.key > q.struct[4*a+i].key: 
    min_child = q.struct[4*a+i] 
    idx_min = min_child.arr_index  

  

if c4 < pqueue.size: 
  if q.nodes[q.structure[c4]].key < val_min: 
    idx_min, val_min = c4, q.nodes[q.structure[c4]].key 
  if q.nodes[q.structure[c3]].key < val_min: 
     idx_min, val_min = c3, q.nodes[q.structure[c3]].key 
  if q.nodes[q.structure[c2]].key < val_min: 
     idx_min, val_min = c2, q.nodes[q.structure[c2]].key 
  if q.nodes[q.structure[c1]].q < val_min: 
     idx_min, val_min = c1, q.nodes[q.structure[c1]].key 
 
elif c3 < q.size: 
  ... # unrolled version for three children 
elif c2 < q.size: 
  ... # unrolled version for two children 
elif c1 < q.size: 
  ... # unrolled version for one child  

 
 

Following this initial examination, we tested different combinations of these aspects to see what 
would ultimately yield the most effective heap for Dijkstra’s algorithm, down to the level of 
comparing different data types used. Each test repeated the benchmark for all-to-all skimming - 
the results have been tabulated below.  

Practice Measured improvement 

Change from “pointer array” to 
two arrays 

+10% 

Unrolling hot loop +8% 

Tail recursion vs while loop nil 

Data types nil 

  

Having tested these factors on skimming performance, we determined the two-array approach 
had the largest impact on performance. In addition, the Cython compiler is able to optimise tail 



 

recursion out, resulting in no performance difference in how the loop is set up. The types of data 
were inconsequential in testing, likely due to its relatively inconsequential size difference, for 
instance integer versus unsigned integer. This exercise showed the counterintuitive conclusion 
that sometimes the shortest code isn’t always the most effective, as was the case with heap 
structure and child logic. In other words, Francois nailed it. 

 

  

Effects and considerations of multithreading 

Having now identified the best heap across project sizes, we also examined how these runtime 
improvements changed over a range of thread counts to account for different levels of 
resourcing available to users. Chicago sketch was excluded from this benchmark due to its size. 

 

 

As the number of cores increase, the behaviour of the two heaps is similar and consistent with 
Amdahl’s law and yields diminishing returns. As the core counts increase, the runtime of each 
data structure begins to converge, lending credence to “throwing money at the problem” as a 
means of improving computation time. 

Given the total runtime naturally diminishes as the number of threads running increases, we 
examined the ratio of performance of the 4-ary heap as a factor of the Fibonacci runtime. 



 

 

Across all core counts, the 4-ary heap results in a significant performance bump. This is most 
pronounced on the lower end of core counts which are above 2.5x up to 20 threads. The 
improvement in performance declines as the number of cores increases. We believe this is to do 
with the increasing proportion of non-parallelisable overhead and single threaded code. Beyond 
32 threads, the machine used to benchmark utilises hyperthreading.  

Despite spending considerable time investigating we were unable to adequately explain the 
dramatically different shape of the Long An model compared to the other two models. It is 
neither the smallest nor largest network and doesn’t have significantly different network shape 
that we could discern. 

Conclusion  

Our goal during this exercise was to determine whether an alternate implementation of a 
priority queue could result in an improvement in the performance of the package. The results 
presented here have been uniformly positive results with little down-side and as such we have 
replaced the existing Fibonacci implementation within Aequilibrae with the 4-ary heap 
implementation written by Francois Pacull in this Pull Request. Beyond this, we have also added 
further weight to observation that the Fibonacci heap is not effective in the context of 
transportation modelling. 

 

 

 


